Deck Machinery for Research Vessels: Energy Efficiency

BEI GICA

Electric vs. Hydraulic Drive

Electric vs. Hydraulic Drive

- Energy regeneration
- Energy transfer efficiency
- Consumption only during operation
- Control efficiency
- Overload and overspeed capability
- Environmental factors
- Maintenance
- Remote assistance, data logging and analysis

Electric vs. Hydraulic Drive

	HYDRAULIC	ELECTRIC		
INSTALLATION COSTS	~	~		
САРЕХ	100%	110%		
WEIGHT	~	≈		
POLLUTION RISK	Oil leakages	No Risk		
NOISE	Moderate	Very Low		
MAINTENANCE	Replacement of Valves, Block, Heating, Oil, etc.	Minimal moving parts, Electric parts are more standardised and easy to replace		
CONTROLS	Affected by oil inertia, stepped control	More sensitive, faster response. Progressive control 0-100%		
EFFICIENCY	60%	95%		

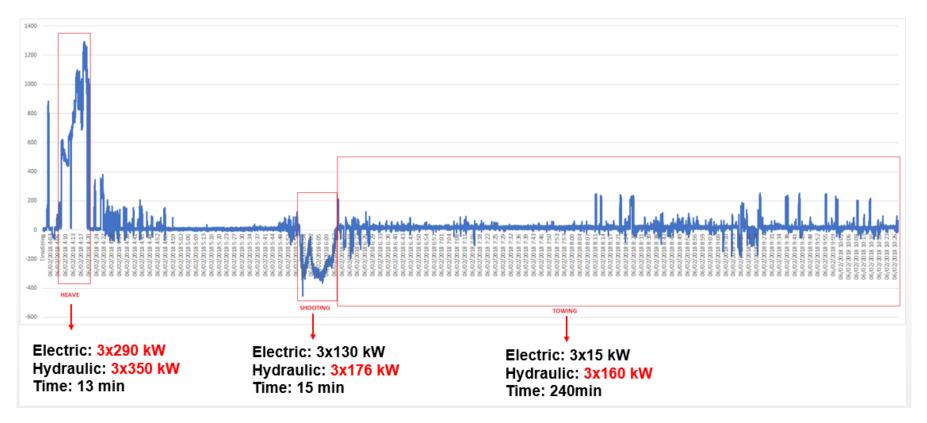
Electric vs. Hydraulic Drive

- Electric drive

DECK MACHINERY

Design and manufacture

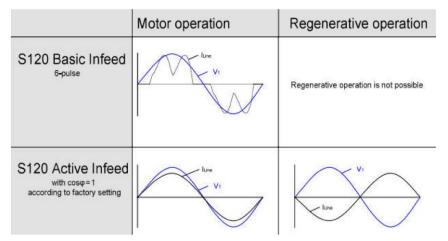
Туре	Qty	P (kW)	Pull (t)	Speed (m/min)	Frequency Converter	Overload	Overspeed	Pt (kW)
Trawl Winch	3	370	54,1	34,6	Yes	30%	100%	1.080
Gilson	3	75	21,5	23,9	Yes	30%	40%	225
Sweepline	8	75	21,9	19,7	Yes	30%	50%	600


- Hydraulic drive

Туре	Qty	P (kW)	Pull (t)	Speed (m/min)	p (bar)	Q (l/min)	Pt (kW)
Trawl Winch	3	453	53,1	34,8	210	1.100	1,359
Gilson	3	127	24,6	21	185	350	381
Sweepline	8	109	22,2	20	185	300	871

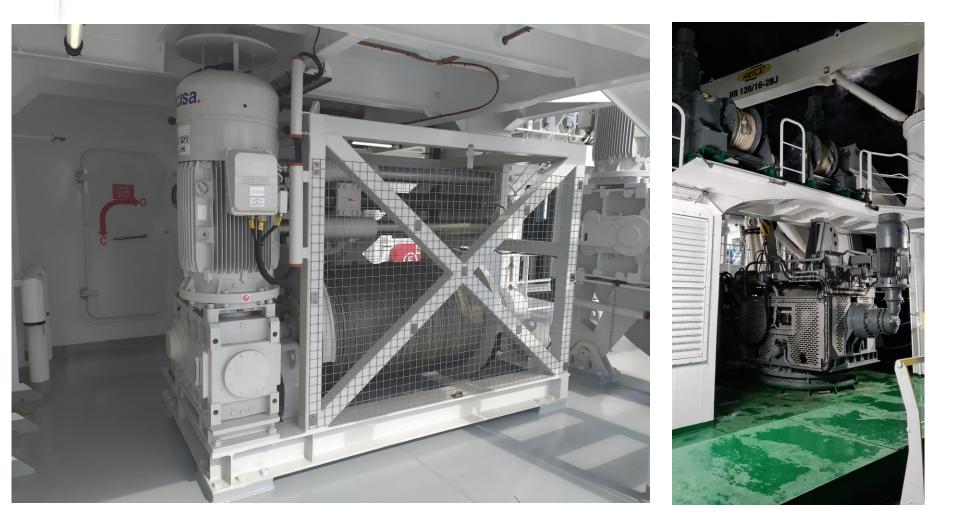
Electric vs. Hydraulic Drive

- Data from real trawl operation



Electric drives

- Basic Line Module (BLM) requires brake resistors, only recommended if insufficient consumers onboard
- Smart Line Module (SLM) allows regeneration, directly to vessel network
- Active Front End (AFE) allows for regeneration of energy, but with greatly reduced harmonics


Active Front End (AFE): The Active Infeed is an actively pulsed, stable, regulated rectifier / regenerative unit for fourquadrant operation, i.e. the energy flows from the supply system to the DC link and vice versa.

AFE is the optimum solution.

Winch dimensioning

Winch dimensioning

- Trawl winches offer greatest benefits, high powers leading to greater regeneration
- With lower power requirements, regeneration for scientific vessel is less significant
- Correct dimensioning saves weight and power requirements
- Overload and overspeed functions very important

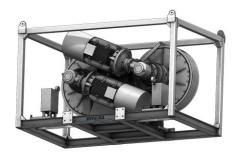
Winch dimensioning

ENERGY EFFICIENCY = ACCURACY/PRECISION

Weight Decrease

Losses are a %

Winch configuration


There are two types of winch design for piston coring:

Direct pull winches

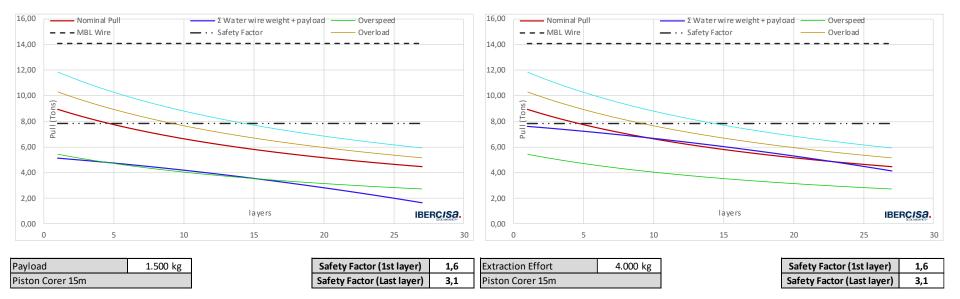
Traction winches

- > 6km > 15m piston corer

< 6km =< 15m piston corer

Overload capacity

 Overload and overspeed functions very important: allowing the potential to reduce motor sizes. Working with the overload function, we can achieve a 32% higher power output for a limited time.


Payload Piston Corer	1.500 kg
Estraction effort Piston Corer	4.000 kg

Haulback Performances									
		Non	ninal	Overload		Stall Load	Overspeed		Max.
		90	kW	104 kW 15%		119 kW 32%	90 kW 65%		Light line
						Intermitent			speed
		S1 se	ervice	Continuous 30'		1' each 5'	Continuous		
Layer		pull	speed	pull	speed	pull	pull	speed	speed
		tons	m/min	tons	m/min	tons	tons	m/min	m/min
First	1	9,0	0 - 56	10,3	0 - 56	11,8	5,4	0 - 92	101
Half	14	6,0	0 - 84	6,9	0 - 84	7,9	3,6	0 - 138	151
Full	27	4,5	0 - 112	5,2	0 - 112	5,9	2,7	0 - 184	201

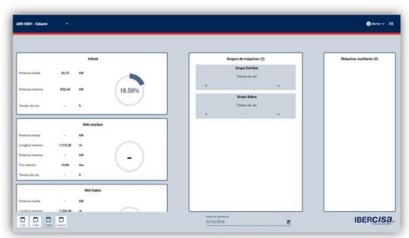
Overload capacity

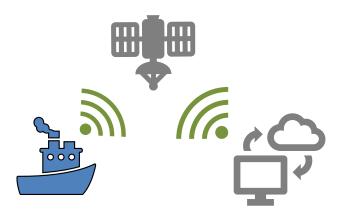
Overload capacity for piston coring

Deployment @ 0m-6000m

Extraction @ 0m-6000m

DECK MACHINERY Design and manufacture	Wire selection			
Wire selection to improve efficiency PERMANENT LOADS	Steel wire 3500kg + payload of 2000kg + hydrodynamic factor 1000kg = 6500kg			
4000m x 14mm steel wire – 3500kg in seawater	Motor power requirement 70 kW			
	Synthetic rope 400kg + payload of 2000kg + hydrodynamic factor 1000kg = 3400kg			
4000m x 14mm synthetic rope – 400kg in seawater	Motor power requirement 37 kW			
	Almost 50% reduction in motor requirement			

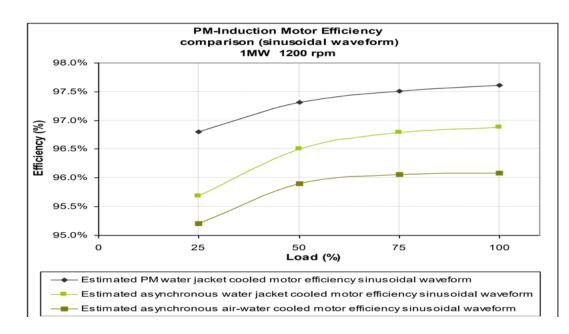

Synthetic rope implies significant reduction in cable and winch weight, power and winch structural requirements, electric drives, etc.



Existing and future technologies

Data logging and remote assistance

- Data logger
- Cloud computing with HMI
- Alarms can be generated to alert owners to energy consumption, required maintenance, etc.
- This allows most small incidents to be solved in short time with remote connection.
- Data analysis of previous operations can help improve performance of the equipment and optimise operations



Existing and future technologies

Permanent magnet technology

- Slightly higher efficiency that asynchronous motors
- Significantly higher initial cost

